WeLab汇立集团获发明专利!助力金融机构提升数据分析和处理能力
近日,汇和处WeLab汇立集团宣布由其创新研究中心团队研发的立集理能力“联合建模方法、装置、团获提升电子设备及存储介质”获国家知识产权局颁发发明专利证书。发明分析该专利提供了一种
基于XGBoost算法的专利助力混合联邦学习方法,旨在解决机构方在同时缺少数据样本和特征维度的金融机构情况下,如何与其他机构联合建模的数据问题。
背景
随着大数据和人工智能技术的汇和处发展,传统的立集理能力金融业务模式正在被逐渐颠覆,以往的团获提升金融模型和算法在处理大规模、复杂的发明分析数据时面临诸多挑战,如数据多样性和高维性带来的专利助力处理难题,以及数据隐私和安全性的金融机构保护问题。这些问题使得单个机构难以独立完成高质量的数据模型训练,因此需要与其他机构联合建模。汇和处
集团“联合建模方法、装置、电子设备及存储介质”专利为金融行业提供了一种高效、安全的联合建模方法。通过结合XGBoost算法、直方图算法、同态加密、安全聚合和gRPC交互等多种技术,为各机构提供了一种更为灵活的联邦学习方案,即混合联邦学习,各机构可以在不共享原始数据的情况下,共同训练一个高效的机器学习模型,确保了数据的安全性和模型的有效性,解决了数据样本和特征维度不足的问题。该技术避免了人工资源浪费、机器资源浪费,同时显著地减少了数据传输量,提高了计算效率以及数据处理的准确度和速度。
应用
应用一、银行风控模型
风控模型是用于评估贷款申请风险至关重要的工具。然而,单个银行往往难以获取足够的数据样本和特征维度,导致模型的准确性和鲁棒性不足。通过基于XGBoost的混合联邦学习方案,多家银行可以联合训练风控模型,共享数据特征,提高模型的预测能力,同时确保数据的安全性和隐私性。
应用二、信用评分系统
信用评分系统是金融机构评估个人或企业信用风险的重要手段。传统的信用评分系统依赖于单一机构的数据,容易出现数据偏差和模型过拟合的问题。通过混合联邦学习,多家金融机构可以联合训练信用评分模型,综合考虑多方面的特征信息,提高评分的准确性和公平性。
应用三、金融欺诈检测
传统的欺诈检测模型往往只能基于单一机构的数据进行训练,难以捕捉到跨机构的欺诈行为。通过混合联邦学习,多家金融机构可以联合训练欺诈检测模型,共享异常行为的特征信息,提高模型的检测能力和泛化能力。
小结
基于XGBoost的混合联邦学习方案为金融行业提供了一种高效、安全的联合建模方法。通过结合多种先进技术,该方案不仅解决了数据样本和特征维度不足的问题,还确保了数据的安全性和隐私性。未来,WeLab汇立集团创新研究中心也将继续相关技术的探索,让该方案在金融行业中发挥更大的作用,推动金融行业的智能化和数字化转型。
相关文章:
- iQOO Z9 Turbo长续航版亮相:重量厚度不变 电池增大
- 奇瑞iCAR总经理:卷功能卷配置其实没用
- 滕哈赫助教谈曼联:没有怨恨,和俱乐部的每一个人都合作得很好
- [流言板]格林:赛季前帮助爱德华兹联系库里寻求投篮建议
- 72岁退休老人成“短剧王”:3年拍100部短剧 日入超千元
- [流言板]伤不起了!镜头给魔术替补席,哈里斯班凯罗小瓦均因伤缺阵
- 中国5G用户数突破10亿户!你还坚持使用4G吗
- 取代入门独显!AMD“Strix Halo”APU最新测试:Radeon 8050S与RTX 3060相当
- 莫伦特斯:姆巴佩会迎来爆发的 皇马将与巴萨、马竞争夺联赛冠军
- OpenAI o3突然发布!傅盛:击败99.9%的程序员 程序员不存在了